45 research outputs found

    Fractal clustering of inertial particles in random flows

    Full text link
    It is shown that preferential concentrations of inertial (finite-size) particle suspensions in turbulent flows follow from the dissipative nature of their dynamics. In phase space, particle trajectories converge toward a dynamical fractal attractor. Below a critical Stokes number (non-dimensional viscous friction time), the projection on position space is a dynamical fractal cluster; above this number, particles are space filling. Numerical simulations and semi-heuristic theory illustrating such effects are presented for a simple model of inertial particle dynamics.Comment: 4 pages, 4 figures, Physics of Fluids, in pres

    Timescales of Turbulent Relative Dispersion

    Full text link
    Tracers in a turbulent flow separate according to the celebrated t3/2t^{3/2} Richardson--Obukhov law, which is usually explained by a scale-dependent effective diffusivity. Here, supported by state-of-the-art numerics, we revisit this argument. The Lagrangian correlation time of velocity differences is found to increase too quickly for validating this approach, but acceleration differences decorrelate on dissipative timescales. This results in an asymptotic diffusion t1/2\propto t^{1/2} of velocity differences, so that the long-time behavior of distances is that of the integral of Brownian motion. The time of convergence to this regime is shown to be that of deviations from Batchelor's initial ballistic regime, given by a scale-dependent energy dissipation time rather than the usual turnover time. It is finally argued that the fluid flow intermittency should not affect this long-time behavior of relativeComment: 4 pages, 3 figure

    Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer

    Full text link
    The impact of turbulent fluctuations on the forces exerted by a fluid on a towed spherical particle is investigated by means of high-resolution direct numerical simulations. The measurements are carried out using a novel scheme to integrate the two-way coupling between the particle and the incompressible surrounding fluid flow maintained in a high-Reynolds-number turbulent regime. The main idea consists in combining a Fourier pseudo-spectral method for the fluid with an immersed-boundary technique to impose the no-slip boundary condition on the surface of the particle. Benchmarking of the code shows a good agreement with experimental and numerical measurements from other groups. A study of the turbulent wake downstream the sphere is also reported. The mean velocity deficit is shown to behave as the inverse of the distance from the particle, as predicted from classical similarity analysis. This law is reinterpreted in terms of the principle of "permanence of large eddies" that relates infrared asymptotic self-similarity to the law of decay of energy in homogeneous turbulence. The developed method is then used to attack the problem of an upstream flow that is in a developed turbulent regime. It is shown that the average drag force increases as a function of the turbulent intensity and the particle Reynolds number. This increase is significantly larger than predicted by standard drag correlations based on laminar upstream flows. It is found that the relevant parameter is the ratio of the viscous boundary layer thickness to the dissipation scale of the ambient turbulent flow. The drag enhancement can be motivated by the modification of the mean velocity and pressure profile around the sphere by small scale turbulent fluctuations.Comment: 24 pages, 22 figure

    Stochastic suspensions of heavy particles

    Full text link
    Turbulent suspensions of heavy particles in incompressible flows have gained much attention in recent years. A large amount of work focused on the impact that the inertia and the dissipative dynamics of the particles have on their dynamical and statistical properties. Substantial progress followed from the study of suspensions in model flows which, although much simpler, reproduce most of the important mechanisms observed in real turbulence. This paper presents recent developments made on the relative motion of a pair of particles suspended in time-uncorrelated and spatially self-similar Gaussian flows. This review is complemented by new results. By introducing a time-dependent Stokes number, it is demonstrated that inertial particle relative dispersion recovers asymptotically Richardson's diffusion associated to simple tracers. A perturbative (homogeneization) technique is used in the small-Stokes-number asymptotics and leads to interpreting first-order corrections to tracer dynamics in terms of an effective drift. This expansion implies that the correlation dimension deficit behaves linearly as a function of the Stokes number. The validity and the accuracy of this prediction is confirmed by numerical simulations.Comment: 15 pages, 12 figure

    Universality of Velocity Gradients in Forced Burgers Turbulence

    Full text link
    It is demonstrated that Burgers turbulence subject to large-scale white-noise-in-time random forcing has a universal power-law tail with exponent -7/2 in the probability density function of negative velocity gradients, as predicted by E, Khanin, Mazel and Sinai (1997, Phys. Rev. Lett. 78, 1904). A particle and shock tracking numerical method gives about five decades of scaling. Using a Lagrangian approach, the -7/2 law is related to the shape of the unstable manifold associated to the global minimizer.Comment: 4 pages, 2 figures, RevTex4, published versio

    Geometry and violent events in turbulent pair dispersion

    Full text link
    The statistics of Lagrangian pair dispersion in a homogeneous isotropic flow is investigated by means of direct numerical simulations. The focus is on deviations from Richardson eddy-diffusivity model and in particular on the strong fluctuations experienced by tracers. Evidence is obtained that the distribution of distances attains an almost self-similar regime characterized by a very weak intermittency. The timescale of convergence to this behavior is found to be given by the kinetic energy dissipation time measured at the scale of the initial separation. Conversely the velocity differences between tracers are displaying a strongly anomalous behavior whose scaling properties are very close to that of Lagrangian structure functions. These violent fluctuations are interpreted geometrically and are shown to be responsible for a long-term memory of the initial separation. Despite this strong intermittency, it is found that the mixed moment defined by the ratio between the cube of the longitudinal velocity difference and the distance attains a statistically stationary regime on very short timescales. These results are brought together to address the question of violent events in the distribution of distances. It is found that distances much larger than the average are reached by pairs that have always separated faster since the initial time. They contribute a stretched exponential behavior in the tail of the inter-tracer distance probability distribution. The tail approaches a pure exponential at large times, contradicting Richardson diffusive approach. At the same time, the distance distribution displays a time-dependent power-law behavior at very small values, which is interpreted in terms of fractal geometry. It is argued and demonstrated numerically that the exponent converges to one at large time, again in conflict with Richardson's distribution.Comment: 21 page

    "Locally homogeneous turbulence" Is it an inconsistent framework?

    Full text link
    In his first 1941 paper Kolmogorov assumed that the velocity has increments which are homogeneous and independent of the velocity at a suitable reference point. This assumption of local homogeneity is consistent with the nonlinear dynamics only in an asymptotic sense when the reference point is far away. The inconsistency is illustrated numerically using the Burgers equation. Kolmogorov's derivation of the four-fifths law for the third-order structure function and its anisotropic generalization are actually valid only for homogeneous turbulence, but a local version due to Duchon and Robert still holds. A Kolomogorov--Landau approach is proposed to handle the effect of fluctuations in the large-scale velocity on small-scale statistical properties; it is is only a mild extension of the 1941 theory and does not incorporate intermittency effects.Comment: 4 pages, 2 figure
    corecore